Erratum: Size Dependence of Self-Diffusion in the Hard-Square Lattice Gas ${ }^{1}$

J. Jäckle, ${ }^{2}$ K. Froböse, ${ }^{2}$ and D. Knödler ${ }^{2}$

In the proof of the absence of a threshold for rectangular-cluster percolation given in the Appendix, the lower bound (A4) to the probability for obtaining a covering cluster of size $L \times L$ is not correct. The reason is that the two factors (A2) and (A3) are not the probabilities of statistically independent events. The defect can be easily cured, however, following a suggestion by Reiter ${ }^{(1)}$ to introduce a third length. After dividing the total $L \times L$ lattice into $L / 2$ subsystems of size $(2 L)^{1 / 2} \times(2 L)^{1 / 2}$ we split each of the subsystems into four equal parts of size $(L / 2)^{1 / 2} \times(L / 2)^{1 / 2}$. [We assume that $(L / 2)^{1 / 2}$ is an integer.] In each subsystem we mark the part in the lower left corner. Figure 1 shows this subdivision for $L=18$. The probability that at least one of the $L / 2$ parts percolates is given by

$$
1-\left[1-p_{(L / 2)^{1 / 2}\left(c_{h}\right)}\right]^{L / 2}
$$

which differs from (A2) only by $L / 2$ replacing L. It therefore tends to unity for $L \rightarrow \infty$ as well. A lower bound to the probability that one of the percolating $(L / 2)^{1 / 2} \times(L / 2)^{1 / 2}$ clusters grows to the size of the whole $L \times L$ lattice is obtained by considering a modified growth process. Here only the occupation of those $k(l)$ sites along an edge of the growing $l \times l$ square is taken into account, which do not belong to any of the marked $(L / 2)^{1 / 2} \times(L / 2)^{1 / 2}$ blocks. (In the figure the dashed lines mark these sites for two different l values. Note that periodic boundary conditions are assumed.) Since

$$
k(l) \geqslant \alpha l \quad \text { with } \quad \alpha=2 / 5
$$

holds, a lower bound to the probability for this growth process to occur is given by

$$
p_{L}^{\prime} / p_{(L / 2)^{1 / 2}}^{\prime}
$$

[^0]

Fig. 1. Subdivision of 18×18 lattice and sites considered in modified growth process (dashed lines). Each block itself is a subsystem of size 3×3.
where the probabilities p_{l}^{\prime} satisfy the recurrence relation

$$
p_{l+2}^{\prime}=p_{l}^{\prime}\left[1-\left(1-c_{h}\right)^{\alpha l}\right]^{4}
$$

This differs from the recurrence relation (A1) only in the exponent αl which replaces l. In the same way as for p_{l}, it can be shown that p_{l}^{\prime} converges to a nonzero limit $p_{\infty}^{\prime}>0$. Therefore the factor (A^{\prime}) converges to one for $L \rightarrow \infty$, from which the proof follows.

ACKNOWLEDGMENT

We acknowledge the constructive criticism by Dr. Johannes Reiter.

REFERENCE

1. J. Reiter, J. Chem. Phys., to appear.

[^0]: ${ }^{1}$ This paper originally appeared in J. Stat. Phys. 63:249 (1991).

